データロガーを活用した理科実験

1. はじめに

2. アンケート

教師用・生徒用

3.専用ソフト簡易マニュアル

4. 実験集

①中和反応(導電率とpHの変化)
 ②蒸散のはたらき(容器内の湿度変化)
 ③光合成(CO₂の濃度変化)
 ④植物の呼吸(CO₂の濃度変化)
 ⑤ペットボトルによる空気の圧縮

(気圧と気温の変化)

⑥雲の発生(気圧と気温の変化)

⑦気圧の測定(高度による気圧の変化)⑧気温と湿度の関係

(加熱・冷却による気温と湿度の変化)

はじめに

学校教育において | CTの活用が推進され、年々環境も整備されてきた。教師が電子黒板やプロジェクターを用いてデジタル教科書や様々なコンテンツを提示したり、情報の収集やプレゼン資料の作成に、生徒自身がパソコンを活用するなど、教育現場での活用事例も多くみられるようになってきた。この教育の | CT化は世界的な動向である。

また、諸外国の先進的な理科教育では、ICT機器としてデータロガーが導入されている。データロガーを活用した実験では、科学的思考力やデータ・グラフの分析能力の向上が期待できる。しかし、日本の理科教育では、一部のSSHや理工系の学部でデータロガーが導入されているだけで、その報告例も限られている。教科書に示されている実験例も 慣例的なものが多く、実験機器のICT化にはまだまだ消極的である。

そこで、三重大学CST養成プログラムでは、データロガーの活用実践に取り組み、その教材開発も行ってきた(実験にはPASCO社のSPARK(島津理化)を使用)。実践報告では、その効果にも手ごたえを感じている。本コンテンツでは、データロガーの活用例を紹介し、より多くの学校現場で実践していただきたいと考えている。

尚、教育効果の研究のため、データロガーを活用した実験についてのアンケート調査の 協力をお願いしている。実験例を実践された方は、本コンテンツ内のアンケート調査(教 師用と生徒用)を行い、結果を以下のところまで郵送して下さい。

〒514-8507
三重県津市栗真町屋町 1577
三重大学 学務部 教務チーム
CST サポート室 行
<li☎059-231-9949

※著作権法上の「私的使用」や「引用」の範囲を超えて当コンテンツを使用する場合には、 著作権者の使用許諾が必要となります。 コンテンツを許可なく複製、編集、転載するこ とはできません。

アンケート(教師用)

実験内容(

)

次のそれぞれの質問に答えてください。選択肢があるものは、①~④から1つ選び、番号を丸でかこんで下さい。

1. 実験中の操作は、スムーズに進めることができましたか。

①できた ②まあまあできた ③あまりできなかった ④全然できなかった

2. 今回の実験は、どのように行いましたか。

①データロガーだけの実験 ②従来の実験との併用 ③その他()

3. 従来の実験と比較して感じたことをお書きください。

4. 今日の実験で、データロガーを使ってよかったと思いますか。

①すごく思う ②やや思う ③あまり思わない ④全然思わない

5.4で選んだ答えの理由を教えてください。

6. データロガーを使った実験について思ったことを、自由に書いてください。

アンケート(生徒用)

実験内容(

)

次のそれぞれの質問に答えてください。選択肢があるものは、①~④から1つ選び、番号を丸でかこんで下さい。

1. 今日の実験の内容は、十分理解できましたか。

①よく理解できた ②まあまあ理解できた ③あまり理解できなかった ④全然理解できなかった

2. データロガーが示しているグラフの変化は、何を表しているか理解できましたか。

①よく理解できた ②まあまあ理解できた ③あまり理解できなかった ④全然理解できなかった

3. 今日の実験で、データロガーのグラフの変化から、どんなことがわかりましたか。

4. 今日の実験で、データロガーを使ってよかったと思いますか。

①すごく思う ②やや思う ③あまり思わない ④全然思わない

5.4で選んだ答えの理由を教えてください。

6. データロガーを使った実験について思ったことを、自由に書いてください。

1. 測定画面(グラフ)の表示

《測定する項目が1つの場合》 例:CO₂濃度の測定

SPARKvueを起動し、測定する項目 「CO2濃度」を選択して画面下の「表 示」をクリック。

《測定する項目が2つの場合》 例:気温と湿度の測定

① SPARKvue を起動し、画面右下の 「作成」をクリックする。

③「相対湿度」を選択し、右側のグ

ラフ作成ボタンをクリックする。

② 「温度」を選択し、右側のグラフ作成ボ タンをクリックする。

2. スケールの調整

データロガー(SPARK)の測定値の微小な変化を明確にするために、グラフのスケール は適正な値に変更しておく必要がある。自動的にスケールを変更する機能もあるが、測定 中に突然変更され、グラフの表示が不安定になることがあるので、手動で調整することを お勧めする。ただし、測定終了後のグラフのスケールを変更する場合は、自動の方が有効 である。

《手動で調整する場合》

ここでは、気圧の測定を例に、スケールの変更手順を紹介する。まず、画面左下の測定 開始ボタンをクリックし、グラフを表示する。

最小値はそのままで、最大値が小さくなった。これで、グラフの変化が大きくなり、 見やすくなる。ただし、気圧変化は高度 3m で約 0.4hPa だから、校内で実験する には、スケールをもっと小さくする必要が ある。

先の操作を繰り返し、測定に必要な範囲 まで、スケールを調整する。

最大値、最小値ともに調整し、グラフの 変化を確認しやすくした。このとき、実 際の実験で測定する範囲がおさまるよう にしておく。

尚、横軸についても同様にスケールを 調整できる。

《自動で調整する場合》

手動と同じく、気圧の測定を例に、スケールの自動調整の手順を紹介する。測定中また は測定終了後、グラフ左下のボタンをクリックし、右側にいくつかの機能ボタンを表示す る。この中の、右上のボタンをクリックすれば、それまでのデータを表示する最適なスケ ールに自動調整される。

3. サンプリングオプション

サンプリングオプションとして、サンプリン グレート (データを記録する間隔) や自動停止 条件を設定できる。

 表示されているサンプリングレートの右 側にある、丸い記号をクリックする。

② 必要に応じて、サンプリングレートを変更する。短時間に多くのデータを取る場合は、単位を「Hz」にする。
 「5Hz」の設定では、1 秒間に 5 回データを取る。ほとんどの場合、1Hz で十分である。長時間のデータを
 測定する場合(1 日の気温の変化など)は、単位を「分」
 や「時」にする。「5 分」の設定では、5 分ごとにデータを取ることになる(1 時間で1 2回)。

- ③ 一定時間後に測定を終了させるには、「自動停止の条件」の「条件」の項で「時間終 了後に停止」を選択し、その下の「値」と「単位」で設定する。
- 4. 表示単位の変更

温度や気圧など、複数の単位で表示できる項目がある。学習内容に沿った単位で表示 されるよう、変更が必要となる場合がある。(例:気温の単位の変更)

 気温のグラフの左下にあるボタンをク リックすると、右側にいくつかの機能ボ タンが表示される。ここで、右下のボタ ンをクリックする。

② グラフのプロパティの画面から、温度の単位
 を「℃」に変更し、「OK」ボタンをクリックし
 てグラフの画面に戻る。

5. データの保存

測定データを保存する場合は、「spark 実 験ファイル」と「テキストファイル」の2 種類の保存形式を選択できる。

- グラフ右上の三角形の記号をクリック する。
- ② 左上の「実験ページ」を選択し、「spark 実験ファイル」形式で保存する場合は「名前を付けて保存」をクリックする。あとでグラフを再現する場合は、この形式で保存すること。「テキストファイル」で保存する場合は「データの出力」をクリックする。それぞれ、ファイル名をつけ、自分で指定した場所に保存する。

6. グラフ画面(画像データ)の保存〔スナップショット機能〕

③ 画面右上の三角形の記号をクリックすると、保存画面になる。画像と一緒にメモを残す場合は、画面下の空欄に入力する。画像データとともに、テキストデータも保存される。

④ 画面上のジャーナルを選択し、「ジャーナルの出 カ」をクリックして保存する。プリンタと接続されている場合は、「ジャーナルの印刷」をクリック すると、すぐに印刷できる。

7. 測定データの消去

画面右下のボタンをクリックし、実験ツー ルの画面から、「データ管理」→「実験の管理」 →「最後のデータを削除」→「はい」→「OK」 の順にクリックして、最初の画面に戻る。

化学分野

中和反応(導電率とpHの変化)

(1)目的

中和反応によって、溶液中の導電率と pH が変化することをデータロガーで視覚化し、イオンの 増減を理解させる。また導電率のグラフから、中和点で溶液中にイオンが存在する場合と存在し ない場合を理解させる。

(2)準備物

データロガー(インターフェイス、マルチ化学センサ、電圧/電流センサ)、パソコン(SPARK vue インストール済)、ステンレス電極、ワニグチクリップコード、スターラー、撹拌子、撹拌子取出 棒、スタンド、電源装置、ビーカー(200ml、100ml)、シリンジ(25mL)、コック、チップ、スポイト、水 酸化バリウム水溶液 100mL(約 0.1mol/L)、硫酸 125mL(0.01mol/L)、フェノールフタレイン ※塩酸と水酸化ナトリウム水溶液の中和反応も、同等の濃度でOK

(3)実験方法

- ① 各種センサをインターフェイスに取り付ける。
 - (i)マルチ化学センサに pH 電極を接続する。
 - (ii) 電圧/電流センサにケーブルを装着する。
 - (iii) それぞれのセンサをインターフェイスに取り付ける。

- ② インターフェースをパソコンに接続する。
- ③ 実験装置を組み立てる。
- (i) 硫酸の入ったビーカー(200mL 用)をスターラーに乗せ、撹 拌子を入れる。また、指示薬(フェノールフタレイン)を数滴加 える。
- (ii) ステンレス電極と pH 電極をセンサ固定シートに取り付け、(i)のビーカーにセットする。
- (iii)電圧/電流センサの-極側のケーブルを、ステンレス電極の一方に取り付ける。電圧/電流センサのプラス極側のケーブルは電源装置の+極につなぎ、電源コードでステンレス電極のもう一方と電源装置の-極をつなぐ。
- 極のもっ一方と電源装直の一極をつなく。 (iv)シリンジにコックとチップを取り付け、水を入れて、滴下する量を調整する(4~5 滴/秒)。調 整後、水を捨ててスタンドに設置する。

- ④ 専用ソフト(SPARK vue)を起動し、画面上に
 電流とpHのグラフが表示できるよう設定する。
- ⑤ スターラーを 20 の目盛にセットし、電源装置 の電圧を5Vにする。SPARK vue の測定開始ボ タンをクリックし、電流量を画面に表す。このと き、電流の値の変化が分かりやすいように、パ ソコンの画面上のスケールを調整する。

⑥ シリンジに水酸化バリウム水溶液を注ぎ、実験開始!測定中にスケールが変わってしまう ことがあるので、その都度調整して変化が見やすくなるようにする。

(4)実験結果

ビュレットを使う従来の中和滴定に比べ、シリンジを使った実験は安全且つ調整が簡単である。実験中はハンドフリーとなるので、グラフ変化に集中することができるが、シリンジ内の溶液 が切れないよう、注意が必要である。補充する際も、ビーカーからシリンジへ簡単に注ぐことが でき、シリンジの目盛を利用すれば、滴定量も測定できる。

データロガーによる測定値は、硫酸と水酸化バリウムの中和実験では、中和点で導電率が0 になることが確認できる。塩酸と水酸化ナトリウム水溶液では、中和点で電導率は最小となるも のの0にはならない。この違いを比較し、水溶液中のイオンの状態を考えさせることができる。 また、pH は中和点付近で急激に変化することもグラフから確認できる。

【硫酸と水酸化バリウム水溶液の中和実験結果】

【塩酸と水酸化ナトリウム水溶液の中和実験結果】

Copyright © 2014 mie-cst All Rights Reserved.

生物分野 蒸散のはたらき(容器内の湿度変化)

(1)目的

蒸散による湿度変化をデータロガーで測定し、その変化を短時間で検証する。また、葉の表 裏の蒸散量の違いを、ワセリンを用いて簡易な方法で確認する。

(2)準備物

データロガー(インターフェイス、気象センサ、センサ延長ケーブル/CO₂ センサに同梱)、ノート パソコン(SPARKvue インストール済)、プラスチック容器、ペーパークリップ、ワセリン、植物の葉 (単に蒸散だけを確認するならセロリなどの草本、表裏の蒸散量の違いを確認するならツバキな どの木本)

(3)実験方法

① データロガーとパソコンを接続する。

- 専用ソフト(SPARK vue)を起動し、気象センサの湿度のグラフを表示する。このとき、センサが反応することを、呼気で確認する。サンプリングレートは 1Hz で OK。
- ③ 1枚の葉をペーパークリップにはさみ、気象センサとともにプラスチック容器に入れる。
 (右の写真はセロリの葉を使った実験の様子。)
- ④ データロガーでプラスチック容器内の湿度を測定する。
- ⑤ グラフのスケールを調節し、見やすくする。

- ⑥ 停止ボタンで測定を中止した後、再度開始ボタンをクリックすると、新たに計測を始め、先のグラフを残したまま、別のグラフが描かれる。
- ⑦ 葉の表裏の蒸散量の違いを確認する場合は、測定を中止してから葉を取り出し、葉にワセリンを塗ってから再び容器にもどして、湿度を測定する。

蒸散による湿度変化は、測定直後か ら現れる。単に蒸散のはたらきを見るだ けであれば草本の植物で十分だが、葉 の表と裏の蒸散量の違いを見る場合は、 木本の植物を材料としたほうが良い。 木本の植物は、葉の裏側にだけ気孔を 持つものが多く、表と裏の蒸散量の違 いが明確に出やすいからである。

従来の実験では、葉や枝の程度が同

じ材料を用意して蒸散量の違いを比較したが、1枚の葉だけで実験できるので手間も少なく、 しかも同じ葉の蒸散量を比較するので、蒸散量の違いに他の要因を排除することができる。

ただし、ワセリンを塗布するために葉を取り出すとき、プラスチック容器内の空気をしっかり 入れ替える必要があり、再び計測する際にスタート時の湿度が少しずれてしまうことがある ので、そのことを含めて生徒に考えさせるようにする。

- ※ワセリンなし ⇒ 裏面にワセリンを塗布 ⇒ 両面にワセリンを塗布 の順に湿度を測定 したときのグラフは、上のようになる。
- ※葉が乾燥すると、本来の蒸散能力を発揮できなくなるので、実験直前まで葉に給水させて おくこと。
- ※草本の植物は、葉の両面に気孔があるので、葉の表と裏の蒸散量の違いを確認しづらい ことがある。それに対し木本の植物の多くは、葉の裏面だけに気孔があり、表と裏の蒸散 量の違いを示しやすい材料となる。
- ※茎から切り離した葉を用いて実験を行うが、セロリ、ホウセンカ、ヤブツバキ、アラカシの4 種については、繰り返して実験(3分×3回)しても、蒸散量は維持されることが確認されている(共分散分析(p < 0.05)で検定済み)。したがって、ワセリンを塗布した実験で蒸散量が減少した原因に、茎から葉を切断したことは含まれない。</p>

※発展的な学習として、クチクラ蒸散などを紹介してもよい。

生物分野

光合成(CO₂の濃度変化)

(1)目的

光合成による気体の濃度変化をデータロガーで測定し、その変化を短時間で検証する。また、 リアルタイムに変化する物質量を視覚化することで、植物のはたらきを明確にする。

(2)準備物

データロガー(インターフェイス、CO₂センサ)、ノートパソコン(SPARKvue インストール済)、サン プルボトル、タンポポの葉(10枚程度)、LED照明

(3)実験方法

① データロガーとパソコンを接続する。

センサの取り付けは、どちらでも OK

- ② 専用ソフト(SPARK vue)を起動し、CO2センサのグラフを表示する。このとき、センサが反応 することを、呼気で確認する。サンプリングレートは 1Hz で OK。
- ③ サンプルボトルにタンポポの葉(10 枚 程度)を入れ呼気を吹き込み、CO₂セン サを取り付ける。
- ④ 照明をつけてサンプルボトルを照らし、
 データロガーで CO,濃度を測定する。

- ⑤ グラフのスケールを調節し、見やすくする。
- ⑥ 停止ボタンで測定を中止した後、再度開始ボタンをクリックすると、新たに計測を始め、先のグラフを残したまま、別のグラフが描かれる。

光合成による気体の濃度変化が現れるには、約 200 秒ほど時間がかかる。よって、照明を当ててから グラフを観察しても、すぐには結果が現れず、混乱を 招く恐れがある。グラフを生徒に見せる前にあらかじ め照明を当てておかなくてはいけない。また、グラフの 変動によってスケールが自動的に変わっていく。常に 見やすいスケールに調整できるように、慣れておく必 要がある。

CO₂だけでなく O₂の濃度変化も同時に見せたい場 合は、CST サポート室に申し出れば O₂センサと 2 穴 のサンプルボトルを借りることができる。その場合、測 定項目を2つにして、グラフを2種類表示できるように 設定すればよい(右図)。ただし、O₂ センサは分解能 が大きい(大気中の濃度が高いため)ので、CO₂に比 べてグラフが粗く表示される。また、上段と下段のグラ フの横軸の値を揃えるように調整が必要となる。

※光合成による気体の濃度変化が現れるまでに、約200秒ほどかかる(個体差があるので注意)ので、生徒にグラフ変化を見せる前に、光を照射しておく。

※光源にLEDライトを用いるので、実験結果が天候に左右されない。(太陽光でもOK。)
※植物の呼吸の実験をこの後に行うことで、植物のはたらきが昼と夜で異なることがよくわかる。

※短時間で結果が現れるので、様々な植生の植物(日なたと日陰など)を用いて比較するなど、 工夫次第で発展的な学習へと導ける。

生物分野

植物の呼吸(CO₂の濃度変化)

(1)目的

植物の呼吸による気体の濃度変化をデータロガーで測定し、その変化を短時間で検証する。 また、リアルタイムに変化する物質量を視覚化することで、植物のはたらきを明確にする。

(2)準備物

データロガー(インターフェイス、CO₂センサ)、ノートパソコン(SPARKvue インストール済)、サン プルボトル、タンポポの葉(10枚程度)、段ボール箱

(3)実験方法

① データロガーとパソコンを接続する。

センサの取り付けは、どちらでも OK

- ② 専用ソフト(SPARK vue)を起動し、CO2 センサのグラフを表示する。このとき、センサが反応 することを、呼気で確認する。サンプリングレートは 1Hz で OK。
- ③ サンプルボトルにタンポポの葉(10 枚程度)を入れ、 CO₂センサを取り付ける。
- ④ サンプルボトルに段ボール箱をかぶせ、データロガー
 で CO₂濃度を測定する。
- ⑤ グラフのスケールを調節し、見やすくする。
- ⑥ 停止ボタンで測定を中止した後、再度開始ボタンをク リックすると、新たに計測を始め、先のグラフを残したま ま、別のグラフが描かれる。

植物の呼吸による気体の濃度変化は、測定開 始直後から現れる。また、完全に遮光しなくても、 段ボール箱をかぶせるだけで反応は現れる(事前 に確認しておくこと)。光合成の実験に続き、サン プルボトルに段ボールをかぶせても、そのはたら きは短時間で確認できる。

光合成の実験と同様、O₂濃度を測定する場合 は事前に O₂ センサを準備しておく(CST サポート 室に依頼して O₂ センサと 2 穴のサンプルボトルを 借りることができる)。表示されるグラフも右図のよ うに2段になるよう、測定項目を2つにしておく。こ のとき、O₂のグラフが CO₂に比べて粗く表示される のは、O₂ センサの分解能が大きいためである。

測定中は、スケールが自動的に変わることがあ

る。また、上段と下段のグラフの横軸がずれてしまうこともあるので、常に調整が必要となる。

※光合成の実験も同時に行うと、植物のはたらきが昼と夜で異なることがよくわかる。

地学分野ペットボトルによる空気の圧縮(気圧と気温の変化)

(1)目的

雲の発生のメカニズムとして、気圧が下がれば気温が下がることを学ぶ。その導入として、気 圧を上げると気温が上がることを、ペットボトルを使って確認する。

(2)準備物

データロガー(インターフェイス、温度センサ)、ノートパソコン(SPARKvue インストール済)、ペットボトル(500mL)、ゴム栓(6号または7号)、雑巾

(3)実験方法

- ① ゴム栓にコルクボーラ—で穴を1つ(内径 4mm)あけ、 温度センサを取り付ける。
- インターフェイスに温度センサを取り付け、パソコンに 接続する。また、ゴム栓をペットボトルに取り付ける。

- ③ 専用ソフト(SPARK vue)を起動し、温度のグラフを表示する。サンプリングレートは 10Hz(1 秒に 10 回)にする。
- ④ 測定を開始し、温度変化が見やすいよう、スケールを調整する。
- ⑤ 雑巾等で手の熱が伝わらないようにして、一気にペットボトルを押す。その後、ペットボトルから 手を離す。

ペットボトルを押した直後に温度が上昇し、手を離した途端、下降しはじめた。この実験では、 リアルタイムに温度が変化する様子を提示することに意味がある。よって、測定開始と同時にス ケールを調整し、温度変化を最大限表示できるようにする必要がある。このとき、温度変化の 幅を事前に確認しておくことが重要となる。手際よく調整できるよう、練習しておくとよい。

また、ペットボトルを素手で触ると、すぐに温度変化が生じる。必ず雑巾等で断熱するように する。

【圧力の変化も測定する場合】

マルチ化学センサを用いて、気圧と温度の変化を同時に測 定することもできる。この場合、ゴム栓に穴を2つあけ、温度 センサと圧力測定用のチューブ(内径 4mm)を装着する。

ただし、温度変化は圧力変化より遅れて現れるので、注意 が必要である。

Copyright © 2014 mie-cst All Rights Reserved.

地学分野

雲の発生(気圧と気温の変化)

(1)目的

気圧と気温に相関関係があることを短時間で検証し、視覚的に捉えて理解させる。雲の発生 のメカニズムを学習する際に必要な知識である。

(2)準備物

データロガー(インターフェイス、マルチ化学センサ、温度センサ)、ノートパソコン(SPARKvue インストール済)、チューブ3本(内径4mm・30cm 程度)、チューブコネクタ(I型・T型各1個)、丸 底フラスコ(300mL)、ゴム栓、シリンジ(マルチ化学センサに同梱)、お湯、線香、ライター ※ガラス管を使う場合、チューブコネクタのI型は不要

(3)実験方法

 ゴム栓にコルクボーラ—で穴を2つ(内径 4mm)あけ、一方にチューブ コネクタ(I型)を取り付ける。ただし、ガラス管を使う場合は、1つだけガ ラス管の径に合わせた穴にする。

- ② チューブコネクタ(T型)と3本のチューブ、シリンジを右図のように接続する。また、チューブの一端に、マルチ化学センサの圧カポートに接続するクイックリリースコネクタ(マルチ化学センサに付属)を取り付ける。
- ③ マルチ化学センサに②のチューブと温度セン サを装着し、インターフェイスに取り付け、パソコ ンと接続する。また、②のチューブのもう一端を ゴム栓のチューブコネクタに取り付け、ゴム栓の もう一つの穴に温度センサを差し込む。

- ④ 専用ソフト(SPARK vue)を起動し、温度と気圧
 のグラフを表示する。サンプリングレートは 5HZ(1 秒に 5 回)で十分だと考えられるが、必要
 に応じて変更してもよい。また気圧の単位を「hPa」に変更する。
- ⑤ 丸底フラスコ内の湿度を上げるため、少量のお湯を入れ、すぐに捨てる。次に、水滴の核になる線香の煙を入れる。ただし、入れすぎると内部が白くなって、雲の発生が確認しづらくなるので注意する。煙を入れたら、すぐにゴム栓をする。

- ⑥ ⑤でお湯を捨てたため、最初はフラスコ内の温度が低下する。よって、しばらく(30 秒ほど) おいてから測定を開始し、シリンジのピストンを引く。ピストンを引いたら、しばらくしてから測 定をやめる(気温の変化に少し時間がかかるため)。
- ⑦ スケールを自動調整し、変化が見やすい状態にする。このとき、横軸がずれないよう気を付ける。

気圧の変化は、ピストンを引いた直後に 大きく表れるが、気温の変化はなだらかな 下降線となる。よって、ピストンを引いた直 後に測定をやめると、気温の変化を十分 に記録できない可能性もあるので注意が 必要である。

雲の発生を肉眼で確認するだけであれ ば、もう少し大きなフラスコでも可能である

が、マルチ化学センサに付属のシリンジを使う場合、膨張率を上げ、気圧や温度変化を大きく するには 300mL が適当と考えられる。膨張率が低いと温度変化も緩やかになり、グラフの変化 も確認しづらくなる。容量の大きなシリンジがあれば、500mL や 1L の丸底フラスコでも十分可能 である。また、実験自体は短時間で終了するので、スケールの変更は、実験終了後に自動調 整でするのがよい。

※最初はお湯や線香の煙を入れずに実験し、雲がほとんど発生しない理由を考えさせるのもよ い。

※シリコンチューブでも十分結果は現れる。ただし、負圧によってチューブが変形し、フラスコ内の 気圧の減少を若干妨げている。気になる場合は、ビニル製で肉厚のチューブを用いること。

地学分野 気圧の変化の測定(高度による気圧の変化)

(1)目的

日常生活では感じることのできない気圧の変化を、データロガーを用いて視覚的に観察する。 また、その結果を利用して空気の質量を算出する。

(2)準備物

データロガー(インターフェイス、気象センサ、センサ延長ケーブル/CO₂ センサに同梱)、ノート パソコン(SPARKvue インストール済)、

(3)実験方法

① データロガーとパソコンを接続する。

- ② 専用ソフト(SPARK vue)を起動し、気象センサの気圧のグラフを表示する。サンプリングレートは 1HZ(1 秒に 1 回)で十分だと考えられるが、必要に応じて変更してもよい。また気圧の単位を「hPa」に変更する。
- ③気圧を測定する。

パソコンとデータロガーを持って、各階の気圧を測定する。このとき、階段やエレベーターを利 用することで、気圧の変化が分かりやすくなる。また、変化が現れるようにスケールを調整す る。

(4)実験結果

階段を使って気圧を測定すると、階が1つ変わるたびに約0.4hPaの気圧変化が確認できた。 校舎内で1つ階を移動するだけでも、十分その変化を観察できる。生徒と一緒に階段を移動す るのが危険な場合は、エレベーターにパソコンとセンサを置き、昇降させた後でグラフを一緒に 確認してもよい。事前に階ごとに高さがどれだけ違うかも確認しておくこと。 ●階段を利用したときの気圧変化測定

三重大学教育学部校舎内の階段を1階から5階まで上り、続けて5階から1階まで下りた。ただし、各フロアで少し留まり、それぞれのフロアの気圧が、グラフで確認しやすいようにした。

【三重大学教育学部校舎内の階段で昇降したときの気圧変化】

●エレベーターを利用したときの気圧変化測定

三重大学生物資源学部校舎内のエレベーターで1階から7階まで上り、続けて7階から1階 まで下りた。

【三重大学生物資源学部校舎内のエレベーターで昇降したときの気圧変化】

【発展学習】

測定結果を利用し、空気1Lの質量を求めてみる。

階段を利用したときのグラフより、階が1つ変わると、約0.4hPaの違いが確認できた。

1hPa = 100Pa だから、0.4hPa = 40Pa = 40N/m²

1 階分の高さを 3m とすると、床 1m² あたり、高さ 3m の空気(体積 3m³の空気)が 40N の力を加 えていることになる。質量 100gの物質にはたらく重力を 1N とすると、40N の重力が加わるのは質 量が 4000gの空気である。よって、空気 3m³の質量が 4000gとなるから、

4000g÷3000L=約1.3g/L となる。

- ※空気の組成を窒素 78%、酸素 21%、アルゴン 1%として、0℃・1 気圧のときの空気の質量を、 原子量をもとに計算すると、1.293g/Lとなる。
- ※台風が通過するときの気圧変化を測定することで、台風が低気圧であることもよくわかる。この 場合、サンプリングレートの間隔を大きくしておくとよい。

地学分野 気温と湿度の変化(加熱・冷却による気温と湿度の変化)

(1)目的

気温が上昇すると飽和水蒸気量が増加することから、湿度は低下する。よって気温と湿 度は増減が反対のグラフを示す。このことを、リアルタイムに短時間で検証する。

(2)準備物

データロガー(インターフェイス、気象センサ、センサ延長ケーブル/CO₂ センサに同梱)、ノート パソコン(SPARKvue インストール済)、プラスチック容器、携帯用カイロ、保冷剤

(3)実験方法

① データロガーとパソコンを接続する。

- ② 専用ソフト(SPARK vue)を起動し、気温と湿度のグラフを表示する。このとき、温度の単位 を「℃」に変更しておくこと。サンプリングレートは 1Hz で OK。
- ③ プラスチック容器に気象センサを入れ、しばらく容器内の気温と湿度を測定する。 このとき、気温と湿度がほぼ変化しないことを示す(その後、気温と湿度が変化す る要因が、この容器にないことを示すため)。また、グラフの変化が見やすいように、 スケールを調整する。

- ④ プラスチック容器の下に、携帯用カイロを敷き、容器内の温度を上昇させる。カイロは事前に暖めておくこと。
- ⑤ グラフの変化が十分確認できたところで、プラスチック 容器の下に保冷剤を敷く。このとき、容器が安定するように工夫する。

気温と湿度の変化を、5分ほどの短時間で確認することができる。準備物も少なく、取り組 みやすい実験である。

ただし、湿度のグラフは、気温のグラフより少し遅れて反応が現れる傾向がある。また、加熱したプラスチック容器を冷却する場面では、湿度が急激に低下することがある(理由は未確認)。その反応が大きく表れると生徒が混乱する可能性があるので、予備実験やグラフの調整等は入念にしておく必要がある。

※グラフが2段になるので、横軸の値(時間)がそろうように、必要に応じて調整する。 ※天気によって、変化の幅に差がでることもある。

※演示実験として生徒に提示する場合は、パソコンを大型モニタに接続する。

※実際の1日の気温と湿度の変化を測定し、その結果を提示することも有効である。晴天や 曇り、または雨天などの変化を事前に測定し、グラフから考えられることを話し合ってもよ

い。その場合、サンプリングレートを10分や1時間に設定すること。