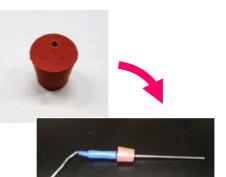
地学分野ペットボトルによる空気の圧縮(気圧と気温の変化)

(1)目的

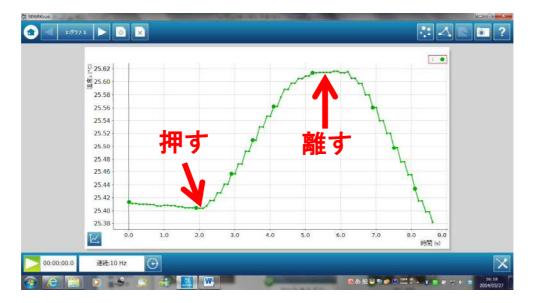
雲の発生のメカニズムとして、気圧が下がれば気温が下がることを学ぶ。その導入として、気 圧を上げると気温が上がることを、ペットボトルを使って確認する。


(2)準備物

データロガー(インターフェイス、温度センサ)、ノートパソコン(SPARKvue インストール済)、ペットボトル(500mL)、ゴム栓(6号または7号)、雑巾

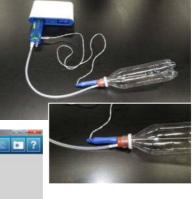
(3)実験方法

- ① ゴム栓にコルクボーラ—で穴を1つ(内径 4mm)あけ、 温度センサを取り付ける。
- インターフェイスに温度センサを取り付け、パソコンに 接続する。また、ゴム栓をペットボトルに取り付ける。


- ③ 専用ソフト(SPARK vue)を起動し、温度のグラフを表示する。サンプリングレートは 10Hz(1 秒に 10回)にする。
- ④ 測定を開始し、温度変化が見やすいよう、スケールを調整する。
- ⑤ 雑巾等で手の熱が伝わらないようにして、一気にペットボトルを押す。その後、ペットボトルから 手を離す。

(4)実験結果

ペットボトルを押した直後に温度が上昇し、手を離した途端、下降しはじめた。この実験では、 リアルタイムに温度が変化する様子を提示することに意味がある。よって、測定開始と同時にス ケールを調整し、温度変化を最大限表示できるようにする必要がある。このとき、温度変化の 幅を事前に確認しておくことが重要となる。手際よく調整できるよう、練習しておくとよい。


また、ペットボトルを素手で触ると、すぐに温度変化が生じる。必ず雑巾等で断熱するように する。

【圧力の変化も測定する場合】

マルチ化学センサを用いて、気圧と温度の変化を同時に測 定することもできる。この場合、ゴム栓に穴を2つあけ、温度 センサと圧力測定用のチューブ(内径 4mm)を装着する。

ただし、温度変化は圧力変化より遅れて現れるので、注意 が必要である。

地学分野

雲の発生(気圧と気温の変化)

(1)目的

気圧と気温に相関関係があることを短時間で検証し、視覚的に捉えて理解させる。 雲の発生のメカニズムを学習する際に必要な知識である。

(2)準備物

データロガー(インターフェイス、マルチ化学センサ、温度センサ)、ノートパソコン(SPARKvue インストール済)、チューブ3本(内径4mm・30cm 程度)、チューブコネクタ(I型・T型各1個)、丸 底フラスコ(300mL)、ゴム栓、シリンジ(マルチ化学センサに同梱)、お湯、線香、ライター ※ガラス管を使う場合、チューブコネクタのI型は不要

(3)実験方法

 ゴム栓にコルクボーラーで穴を2つ(内径 4mm)あけ、一方にチューブ コネクタ(I型)を取り付ける。ただし、ガラス管を使う場合は、1つだけガ ラス管の径に合わせた穴にする。

- ② チューブコネクタ(T型)と3本のチューブ、シリンジを右図のように接続する。また、チューブの一端に、マルチ化学センサの圧カポートに接続するクイックリリースコネクタ(マルチ化学センサに付属)を取り付ける。
- ③ マルチ化学センサに②のチューブと温度セン サを装着し、インターフェイスに取り付け、パソコ ンと接続する。また、②のチューブのもう一端を ゴム栓のチューブコネクタに取り付け、ゴム栓の もう一つの穴に温度センサを差し込む。

- ④ 専用ソフト(SPARK vue)を起動し、温度と気圧
 のグラフを表示する。サンプリングレートは 5HZ(1 秒に 5 回)で十分だと考えられるが、必要
 に応じて変更してもよい。また気圧の単位を「hPa」に変更する。
- ⑤ 丸底フラスコ内の湿度を上げるため、少量のお湯を入れ、すぐに捨てる。次に、水滴の核になる線香の煙を入れる。ただし、入れすぎると内部が白くなって、雲の発生が確認しづらくなるので注意する。煙を入れたら、すぐにゴム栓をする。

- ⑥ ⑤でお湯を捨てたため、最初はフラスコ内の温度が低下する。よって、しばらく(30 秒ほど) おいてから測定を開始し、シリンジのピストンを引く。ピストンを引いたら、しばらくしてから測 定をやめる(気温の変化に少し時間がかかるため)。
- ⑦ スケールを自動調整し、変化が見やすい状態にする。このとき、横軸がずれないよう気を付ける。

(4)実験結果

気圧の変化は、ピストンを引いた直後に 大きく表れるが、気温の変化はなだらかな 下降線となる。よって、ピストンを引いた直 後に測定をやめると、気温の変化を十分 に記録できない可能性もあるので注意が 必要である。

雲の発生を肉眼で確認するだけであれ ば、もう少し大きなフラスコでも可能である

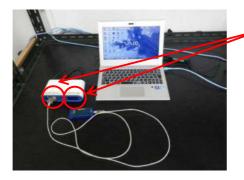
が、マルチ化学センサに付属のシリンジを使う場合、膨張率を上げ、気圧や温度変化を大きく するには 300mL が適当と考えられる。膨張率が低いと温度変化も緩やかになり、グラフの変化 も確認しづらくなる。容量の大きなシリンジがあれば、500mL や 1L の丸底フラスコでも十分可能 である。また、実験自体は短時間で終了するので、スケールの変更は、実験終了後に自動調 整でするのがよい。

※最初はお湯や線香の煙を入れずに実験し、雲がほとんど発生しない理由を考えさせるのもよ い。

※シリコンチューブでも十分結果は現れる。ただし、負圧によってチューブが変形し、フラスコ内の 気圧の減少を若干妨げている。気になる場合は、ビニル製で肉厚のチューブを用いること。

地学分野 気圧の変化の測定(高度による気圧の変化)

(1)目的


日常生活では感じることのできない気圧の変化を、データロガーを用いて視覚的に観察する。 また、その結果を利用して空気の質量を算出する。

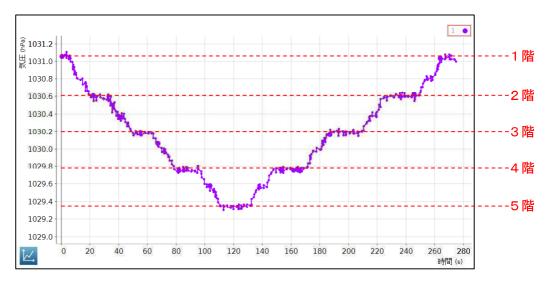
(2)準備物

データロガー(インターフェイス、気象センサ、センサ延長ケーブル/CO₂ センサに同梱)、ノート パソコン(SPARKvue インストール済)、

(3)実験方法

① データロガーとパソコンを接続する。

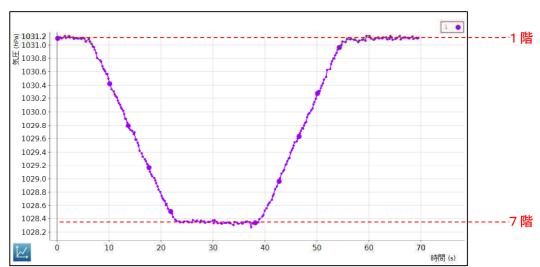
センサの取り付けは、どちらでも OK


- ② 専用ソフト(SPARK vue)を起動し、気象センサの気圧のグラフを表示する。サンプリングレートは 1HZ(1 秒に 1 回)で十分だと考えられるが、必要に応じて変更してもよい。また気圧の単位を「hPa」に変更する。
- ③ 気圧を測定する。

パソコンとデータロガーを持って、各階の気圧を測定する。このとき、階段やエレベーターを利 用することで、気圧の変化が分かりやすくなる。また、変化が現れるようにスケールを調整す る。

(4)実験結果

階段を使って気圧を測定すると、階が1つ変わるたびに約0.4hPaの気圧変化が確認できた。 校舎内で1つ階を移動するだけでも、十分その変化を観察できる。生徒と一緒に階段を移動す るのが危険な場合は、エレベーターにパソコンとセンサを置き、昇降させた後でグラフを一緒に 確認してもよい。事前に階ごとに高さがどれだけ違うかも確認しておくこと。 ●階段を利用したときの気圧変化測定


三重大学教育学部校舎内の階段を1階から5階まで上り、続けて5階から1階まで下りた。ただし、各フロアで少し留まり、それぞれのフロアの気圧が、グラフで確認しやすいようにした。

【三重大学教育学部校舎内の階段で昇降したときの気圧変化】

●エレベーターを利用したときの気圧変化測定

三重大学生物資源学部校舎内のエレベーターで1階から7階まで上り、続けて7階から1階 まで下りた。

【三重大学生物資源学部校舎内のエレベーターで昇降したときの気圧変化】

【発展学習】

測定結果を利用し、空気1Lの質量を求めてみる。

階段を利用したときのグラフより、階が1つ変わると、約0.4hPaの違いが確認できた。 1hPa = 100Pa だから、0.4hPa = 40Pa = 40N/m²

1 階分の高さを 3m とすると、床 1m² あたり、高さ 3m の空気(体積 3m³の空気)が 40N の力を加 えていることになる。質量 100gの物質にはたらく重力を 1N とすると、40N の重力が加わるのは質 量が 4000gの空気である。よって、空気 3m³の質量が 4000gとなるから、

4000g÷3000L=約1.3g/L となる。

※空気の組成を窒素 78%、酸素 21%、アルゴン 1%として、0℃・1 気圧のときの空気の質量を、 原子量をもとに計算すると、1.293g/L となる。

※台風が通過するときの気圧変化を測定することで、台風が低気圧であることもよくわかる。この 場合、サンプリングレートの間隔を大きくしておくとよい。

地学分野 気温と湿度の変化(加熱・冷却による気温と湿度の変化)

(1)目的

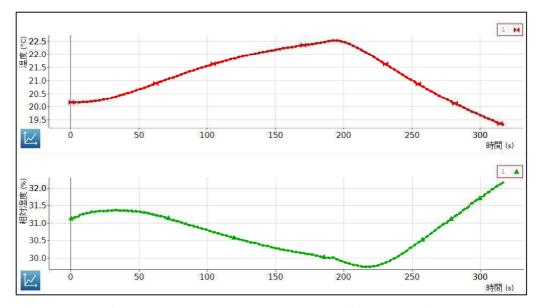
気温が上昇すると飽和水蒸気量が増加することから、湿度は低下する。よって気温と湿 度は増減が反対のグラフを示す。このことを、リアルタイムに短時間で検証する。

(2)準備物

データロガー(インターフェイス、気象センサ、センサ延長ケーブル/CO₂ センサに同梱)、ノート パソコン(SPARKvue インストール済)、プラスチック容器、携帯用カイロ、保冷剤

(3)実験方法

① データロガーとパソコンを接続する。


- ② 専用ソフト(SPARK vue)を起動し、気温と湿度のグラフを表示する。このとき、温度の単位 を「℃」に変更しておくこと。サンプリングレートは 1Hz で OK。
- ③ プラスチック容器に気象センサを入れ、しばらく容器内の気温と湿度を測定する。 このとき、気温と湿度がほぼ変化しないことを示す(その後、気温と湿度が変化す る要因が、この容器にないことを示すため)。また、グラフの変化が見やすいように、 スケールを調整する。

- ④ プラスチック容器の下に、携帯用カイロを敷き、容器内の温度を上昇させる。カイロは事前に暖めておくこと。
- ⑤ グラフの変化が十分確認できたところで、プラスチック 容器の下に保冷剤を敷く。このとき、容器が安定するように工夫する。

(4)実験結果

気温と湿度の変化を、5分ほどの短時間で確認することができる。準備物も少なく、取り組 みやすい実験である。

ただし、湿度のグラフは、気温のグラフより少し遅れて反応が現れる傾向がある。また、加熱したプラスチック容器を冷却する場面では、湿度が急激に低下することがある(理由は未確認)。その反応が大きく表れると生徒が混乱する可能性があるので、予備実験やグラフの 調整等は入念にしておく必要がある。

※グラフが2段になるので、横軸の値(時間)がそろうように、必要に応じて調整する。 ※天気によって、変化の幅に差がでることもある。

※演示実験として生徒に提示する場合は、パソコンを大型モニタに接続する。

※実際の1日の気温と湿度の変化を測定し、その結果を提示することも有効である。晴天や 曇り、または雨天などの変化を事前に測定し、グラフから考えられることを話し合ってもよ い。その場合、サンプリングレートを10分や1時間に設定すること。